

L'AMMODERNAMENTO DEGLI IMPIANTI
COME OCCASIONE PER
INTERCONNETTERE APPARECCHIATURE,
IMPIANTI E SISTEMI INFORMATICI

Luca Velardita SIFI
Michele Chiappetta ABS
Roma – Campus Biomedico
03/07/2018

ABS: ingegneria per automazione e controllo di processo

Società di ingegneria dal 1987

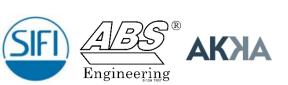
Core business: ingegneria per automazione e controllo di processo

Key specialization:

- Processo
- Strumentazione di campo
- Sistemi di Controllo Distribuito (DCS), Sistemi di Sicurezza strumentati (SIS) Emergency ShutDown Systems (ESD), Sistemi Fire & Gas distribuiti
- Studi di fattibilità e preventivazione, Conceptual, BED, FEED, DED, Project management, Supervisione ed Assistenza ad Erection, Commissioning e Start-up.
- Elaborazione/revisione di manuali operativi, HazId, HazOp, studi di sicurezza, simulazione numerica di dispersioni tossiche/infiammabili e modellazione delle conseguenze, SIL evaluation/assessment
- Energy conservation

Key Value: process know-how, plant management comprehensive vision

ispe.org


Industria 4.0 - Obiettivi

- Interconnessione (beneficio PNI 4.0 Iperammortamento)
- Supervisione \ Controllo
- Raccolta dati \ Analisi
- Previsione delle attività di manutenzione
- Consuntivazione in tempo reale della produzione
- Mobilità

Estrarre informazioni non raggiungibili in precedenza a supporto di:

- + Forecasting
- + Demand Management
- + Production Planning
- + Scheduling
- + Production Execution

Pharmaceutical Knowledge

Industria 4.0 - Serializzazione

1. Applicazione di sistemi antimanomissione ai farmaci

Connecting

- 2. Stampa delle informazioni di produzione richieste dai regolamenti (UE, Turchia, Russia)
- 3. Implementazione del livello di aggregazione

Pharmaceutical

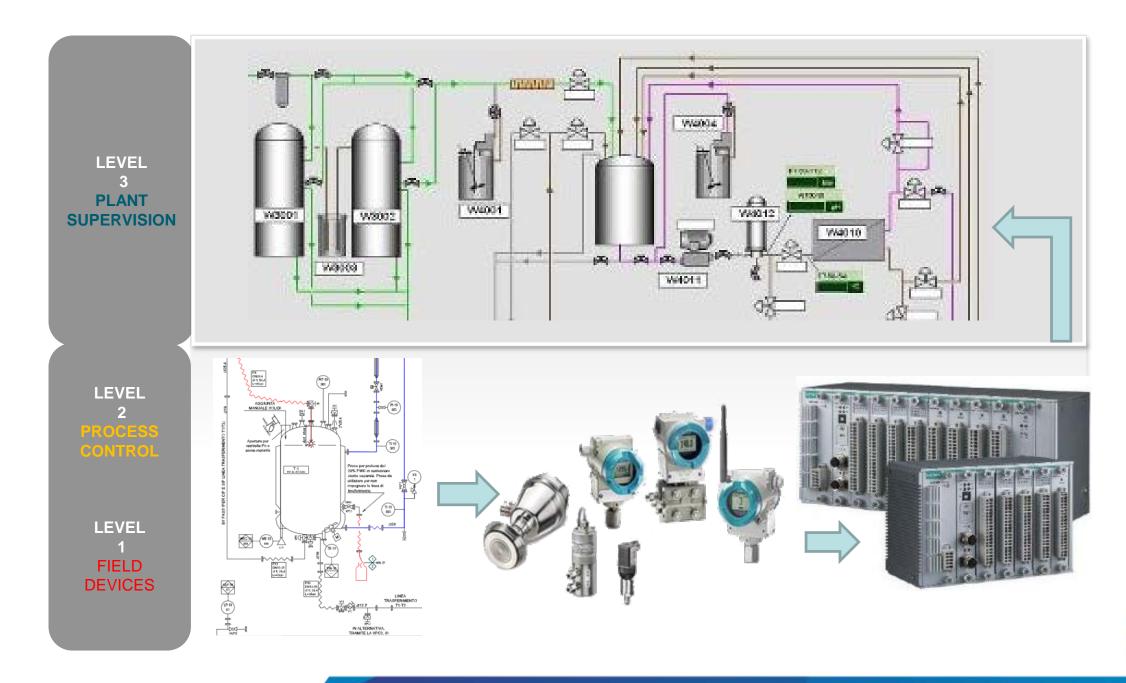
Industria 4.0 – Serializzazione: Architettura

I&A Gap Analysis

Si è analizzato l'intero processo al fine di implementare soluzioni migliorative basate sull'automazione delle fasi di produzione.

Gli steps:

- Analisi dei processi produttivi: tramite una campagna estensiva di sopralluoghi, rilievi e riunioni con il personale di produzione
- Criticità impiantistiche: sono sintetizzate in forma tabellare, assegnando a ciascuna un indice di rilevanza calcolato sulla base di pesi
- Soluzioni possibili: tenendo conto della rilevanza delle singole criticità vengono proposte soluzioni migliorative
- Industria 4.0 Smart factory: l'implementazione delle soluzioni implica un ricorso spinto all'automazione del processo di produzione, migliorando condizioni di lavoro, produttività e qualità



Pharmaceutical Knowledge

Connecting

I&A Gap Analysis

Pharmaceutical Knowledge

Analisi dei processi produttivi

L'analisi ha prodotto:

- nuovi P&IDs che rappresentano fedelmente l'attuale assetto impiantistico, per reparto e per ciascuna delle varie fasi di processo (CIP, SIP, DIP, preparazione, trasferimento)
- acquisizione del know-how specifico sul modus operandi di reparto, che ha evidenziato criticità ed opportunità di miglioramento:
 - Impiego di apparecchiature carrellate, necessità di modifica dei collegamenti tra un assetto ed un altro, ricorso a linee mobili
 - contrazione dei tempi di preparazione
 - o Implementazione non estensiva dell'automazione (il processo è controllato ma molte operazioni sono manuali)
 - riduzione del fattore umano
 - o Ridondanza di piping, presenza di valvole sottoposte ad eccessivo stress termico sulle tenute
 - riduzione del rischio di contaminazione

Pharmaceutical Knowledge ispe.org

Analisi dei processi produttivi

ESEMPIO DI ANALISI PUNTUALE

VESSELS T1/T2		Sezione coinvolta		PIPING	INSTR	AUT	SUP	PRIORITA'	
FASE	DESCRIZIONE	Da	А	PESO CRITICITA'	PESO CRITICITA'	PESO CRITICITA'	PESO CRITICITA'	DIIN	TERVENTO
01- Fase 1	Preparazione	VP1A/B	V9	12	3	6	30	630	ALTA
		VPC1	Contenitore	4	6	4	10	140	BASSA
		V2	V9	8	3	6	20	340	MEDIA
	Trasferimento	V2	V9	8	3	6	20	340	MEDIA
02 - Fase 2		VP4	VP8	4	3	6	20	260	BASSA
04 - Fase 3	Test F103	PWF	F5	4	9	4	10	170	BASSA
05 - Fase 4	CIP e	SKID CIP	V9	8	9	6	30	690	ALTA
T1 (A-B-C-D)	risciacquo T1	VP4	VAS13	12	9	4	10	250	BASSA
06 - Fase 4	CIP e	VP1A/B	V9	12	3	6	30	630	ALTA
T1 (E-F)	risciacquo T1	VP4	VAS13	12	9	4	10	250	BASSA
07 - Fase 4	CIP e	SKID CIP	V24	8	9	6	30	690	ALTA
T2 (A-B-C-D)	risciacquo T2	VP9	VPC3	12	9	4	10	250	BASSA
08 - Fase 4	CIP e	VP5	V24	12	3	6	30	630	ALTA
(E-F)	risciacquo T2	VP9	VPC3	12	9	4	10	250	BASSA
	·	SKID CIP	VP3	12	9	6	30	810	ALTA
09 - Fase 4 LT (A-B)	CIP Linea trasferimento	VP4	VP8	4	3	6	20	260	BASSA
		VP8	VPC3	8	9	4	10	210	BASSA
	Risciacquo L.T.	VP1A/B	VP3	4	3	6	30	390	MEDIA
10 - Fase 4		VP4	VP8	4	3	6	20	260	BASSA
LT ©		VP8	VPC3	8	9	4	10	210	BASSA
	SIP T1	V1	V9	12	3	6	30	630	ALTA
11 - Fase 5		VP4	Contenitore	8	6	4	10	180	BASSA
	SIP T2	V6	V24	12	3	6	30	630	ALTA
12 - Fase 5		VP9	Contenitore	8	6	4	10	180	BASSA
	SIP linea trasferimento	V1	VP3	12	3	6	30	630	ALTA
13 - Fase 5		VP4	VP8	4	3	6	20	260	BASSA
10 10303		VP8	VPC3	8	6	4	10	180	BASSA
14 - Fase 6	DIP T1	V2	V9	8	3	6	30	510	MEDIA
		VP4	VAS13	12	9	4	20	500	MEDIA
15 - Fase 6	DIP T2	V17	V24	8	3	6	30	510	ALTA
		VP8	VAS12	12	9	4	20	500	MEDIA
	DIP Linea trasferimento	V2	VP3	8	3	6	30	510	ALTA
16 - Fase 6		VP4	VP8	4	3	6	20	260	BASSA
		VP4 VP8	VPC3	8	9	4	20	420	MEDIA

Pharmaceutical Knowledge

Soluzioni proposte

- Realizzare linee fisse per il caricamento solidi con trasporto pneumatico.
- Modificare il size delle linee CIP per ridurre la durata dell'operazione.
- Realizzare linee fisse per gli scarichi a vuoto e condense per ridurre tempi di attrezzaggio
- Convogliare al bilanciamento barico tutti gli sfiati dei singoli serbatoi.
- Realizzare double block su fondo serbatoi
- Sostituire le valvole manuali già puntualmente individuate con valvole attuate pneumaticamente, dotate di fc.
- Installare finecorsa di apertura/chiusura sulle valvole attuate sprovviste

ispe.org

Connecting Pharmaceutical Knowledge

Soluzioni proposte

- Installare proximity switch su tutte le connessioni mobili che non possono essere trasformate in fisse.
- Installare sui serbatoi valvola multiport per ingresso utilities con linee dedicate, riducendo al minimo il rischio di contaminazione.
- Installare strumentazione di campo per acquisizione variabili fisiche
- Implementare ricette e logiche di controllo per la gestione di tutte le fasi del processo.

CTP SYSTEM	Cliente:	SIFI SPA	Data 1° emissione:	05/10/17
ABS*	Codice documento:	17CC0A.P.PR.01.01	Last issue:	05/10/17
Engineering	Revisione n.:	01	Pagina:	6 di 30

Fase 3: Test d'integrità filtro F103

3A Lavaggio con PWF

- Intervento 1. Su punto d'uso PWF, sostituzione della valvola through-flow attuale con valvola ON/OFF "tipo GEMU", dead leg minimizzata, attuatore pneumatico e limit switch di apertura/chiusura.
- Intervento 2. Sostituzione della valvola manuale through-flow VPC2 con valvola "ON/OFF", attuatore pneumatico e limit switch di apertura/chiusura.
- Intervento 3. Realizzazione di linea dedicata dall'uscita della valvola sul punto d'uso PWF fino a valvola through-flow VPC2.
- Intervento 4. Sostituzione della valvola a membrana V13 con valvola ON/OFF, attuatore pneumatico e limit switch di apertura/chiusura.
- Intervento 5. Realizzazione di linea dedicata per test d'integrità da punto d'uso aria compressa ad ingresso filtro F103, provvista di trasmettitore di pressione differenziale e valvola d'intercetto ON/OFF, attuatore pneumatico e limit switch di apertura/chiusura.

Connecting Pharmaceutical Knowledge ispe.org

Ingegnerizzazione delle soluzioni

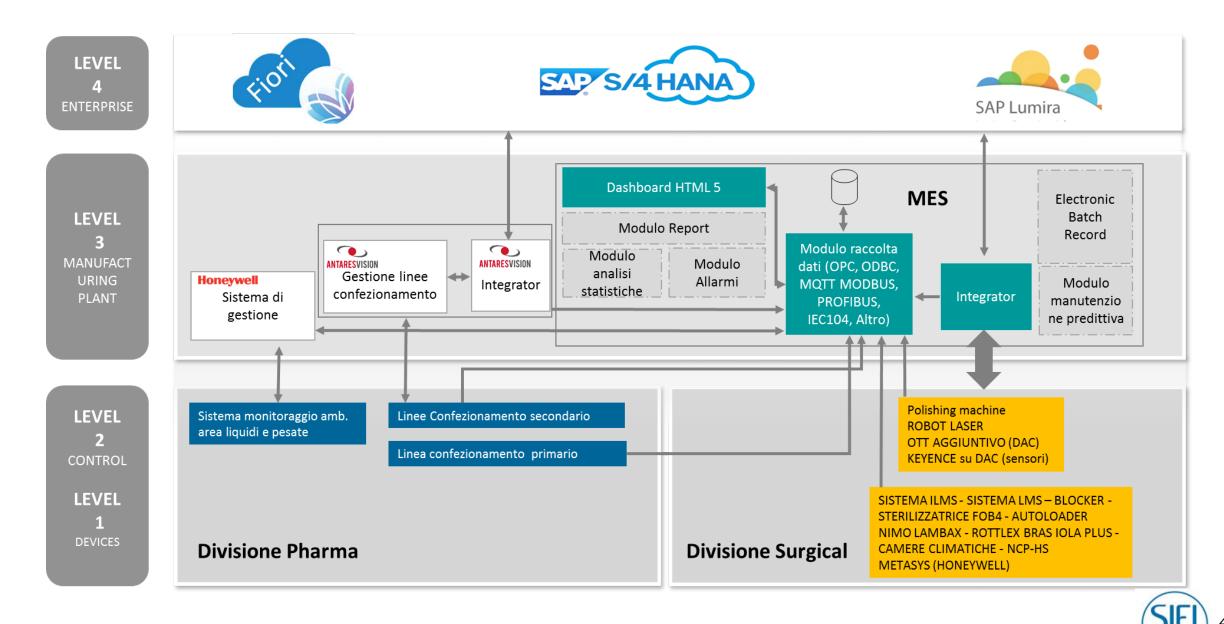
- ST + SK TUBAZIONI
- ST STRUMENTI, VALVOLE ED APPARECCHIATURE
- ELABORAZIONE LOGICHE ED INTERBLOCCHI

DIMENSIONAMENTO ESPANSIONE SISTEMA DI CONTROLLO PER T1/T2

Tino	Canali	Canali	
Tipo	Canali necessari	Incluse	
segnale		spares	
Al	10	16	
AO	11	16	
DI	108	112	
DO	61	64	

- ST EXP. SISTEMA DI CONTROLLO
- ST PREF. E MONTAGGI
- ST MONTAGGI I&E&A
- ST HMI

Industria 4.0 - MES: Requisiti


Descrizione Macchina	Dati OUT (dalla macchina al MES)					
	Dato	Tipologia di Acquisizione (Input Manuale/Acquisizione Automatica/Calcolo)	Sorgente acquisizione	Note		
	Inizio fermo macchina	Acquisizione automatica	Macchina			
	Fine fermo macchina	Acquisizione automatica	Macchina			
	Durata fermo macchina	Calcolo	NA			
	Stato macchina	Acquisizione Automatica	Macchina			
	inizio lavorazione	Acquisizione automatica	Macchina			
	fine lavorazione	Acquisizione automatica	Macchina			
	Durata lavorazione	Calcolo	NA			
	Numero di pezzi prodotti (dato di lavorazione)	Acquisizione automatica	Macchina			
Polishing machine	Numero di barel (dato di lavorazione)	Acquisizione automatica	Macchina			
r enermig maerime	Cycle time (consuntivo)	Acquisizione automatica	Macchina			
	Ore funzionamento componenti	Acquisizione automatica	Macchina			
	Allarmi	Acquisizione automatica	Macchina			
	Dati IN (dal MES alla macchina)					
	Dato			Note		
	avvio lavorazione					
	ordine di produzione					
	Cycle time (target)					
	Interfacce					
	Transazioni		Flusso			
	avvio lavorazione	SAP	MES	Macchina		
	chiusura lavorazione	Macchina	MES	SAP		
	conferma fase	Macchina	MES	SAP		

Connecting Pharmaceutical Knowledge ispe.org

Industria 4.0 - MES: Architettura

Connecting

Pharmaceutical Knowledge ispe.org

Engineering

Opportunità

Il concetto di **smart factory** si fonda sull'interconnessione dei sistemi che costituiscono la catena della creazione del valore

L'automazione costituisce la base imprescindibile per l'implementazione dell'interconnessione in ottica Industry 4.0.

Ciò, oltre ai vantaggi già esposti, apre la strada al miglioramento globale dell'efficienza dei processi.

Il PN Industria 4.0 offre, con la misura dell'iper-ammortamento al 250% un incentivo cospicuo e molto semplice nella modalità di friuzione Il termine è prorogato al 31/12/2018 con effettiva interconnessione entro il 30/06/2019

Note del MISE e dell'Agenzia delle Entrate hanno chiarito cumulabilità con altre misure incentivanti ed ammissibilità dei revamping.

Engineering

Opportunità

Esempio del beneficio ottenibile con la misura dell'iper-ammortamento nell'ipotesi di un'aliquota fiscale media del 30%

Anno	Ammortamento fiscale	Amm.to agevolato	Beneficio fiscale
2019	62.500,00	93.750,00	28.125,00
2020	125.000,00	187.500,00	56.250,00
2021	125.000,00	187.500,00	56.250,00
2022	125.000,00	187.500,00	56.250,00
2023	125.000,00	187.500,00	56.250,00
2024	125.000,00	187.500,00	56.250,00
2025	125.000,00	187.500,00	56.250,00
2026	125.000,00	187.500,00	56.250,00
2027	62.500,00	93.750,00	28.125,00
n/a	-	-	-
Total	i 1.000.000,00	1.500.000,00	450.000,00

Connecting Pharmaceutical